
Agribot
Sprayer, SLAM, and Robust Navigation
Andrey Kurenkov, Troy O’Neal, Pavel Komarov

Agribot Robot Design

Top speed of 2.5mph

110 watt sprayer with 180° range
of motion

15 gallon tank

Wireless 802.11 communications

Kinect 2 camera

SICK 200 LIDAR

200 GPH electric
pump

Problem Statements:
1) SLAM (localization,

mapping, and plant
detection)

2) Plan a path to goal
location, avoid obstacles

3) Design and aim of liquid
sprayer

Sprayer Design

Initial Sprayer Layout Final Sprayer Assembly

Sprayer Inverse Kinematics

Sprayer Embedded Control

Sprayer IK Simulation

(0, 100,- 100)(30, 100, 100)

Gravity-Compensating IK

SLAM and Plant Detection
Problem:
Simultaneous
Localization
and Mapping with
plant detection

Want to combine:
Kinect 2
Odometry
LIDAR

Visualization of SLAM from OmniMapper

Summary of ROS-based SLAM

lsdSLAM demo output

● RatSLAM
○ Bio-inspired SLAM
○ Combines of monocular images and odometry

● LSD-SLAM
○ Purely monocular SLAM
○ Uses direct image alignment

● RGBD SLAM (V2)
○ Uses RGBD (RGB-Depth) data
○ Uses the RBG feed with RANSAC

● RTAB-Map
○ Builds on RGBD SLAM
○ Adds support for multi-session and large-maps

● MonoSLAM
○ Monocular SLAM, standard 1-point RANSAC

with an Extended Kalman Filter for motion
○ Inverse depth parametrization to get the 3D point

locations for mapping.

OmniMapper
● OmniMapper is a framework for SLAM

○ A plugin-based architecture; allows different sensor types to be combined for SLAM.
○ The only real ROS-based SLAM framework for sensor fusion
○ "The key contribution is an approach to integrating data from multiple sensors ... so all

measurements can be considered jointly."

● OmniMapper has the “backend” of Square Root Smoothing And Mapping
○ GTSAM implements the SLAM by optimizing the robot trajectory and landmark positions

with a factor graph-based approach
○ The factors can be different sensors or other variables
○ Rather than optimizing just for the latest pose measurement the "smoothing" part of the

approach means that the entire trajectory is continually optimized with new input.

Kinect 2

● Kinect 2 has is an RGBD sensor
● OmniMapper has a plugin for generic 3D

iterative closest point (ICP)
● Finds overlap between sequential point clouds.
● ICP in OmniMapper is based on PCL Kinect 2 Point Cloud

SLAM with Kinect 2
● Easily Integrated

within ROS launch
files+parameters

● Static transform
publisher node for
Kinect 2 frame

● Low Frequency
(about ~1 Hz)

● Error for fast
movement

○ Need high-
frequency
Odometry

Output of SLAM with just Kinect 2

SLAM with Odometry
Seeker Jr Robot Has Encoder-based Odometry built in (x,y,yaw)

Odometry added to SLAM with ROS tf Straightforward code for sending tf

Plant Detection with PCL
● Need to somehow find plants within sets of 3D points

○ Simplifying assumption: plants are surrounded by empty space

Use PCL to implement Euclidean Clustering+cloud filtering
1. Filter out noise by removing statistical outliers
2. Downsample to simplify cloud
3. Filter out points below some threshold (remove ground)
4. Build KDTree on this Point Cloud
5. Perform Euclidean Clustering to find plants

PCL Results in Synthetic point cloud

Initial Cloud Statistical Outliers Removed

PCL Results in Synthetic point cloud

Downsampled Cloud Height Thresholded Cloud

PCL Results in Synthetic point cloud

Found Clusters Found Clusters in noisier cloud

LIDAR

● SICK 200 (laser scan)
○ Made to work with sick toolbox
○ Allows us to detect obstacles

Full Integrated SLAM
LIDAR integrated as with other sensors

Due to hardware problems on the robot, not yet
tested

LIDAR Obstacle Detection
Implemented simple distance-based approach to LIDAR obstacle detection

Navigation

● Based on data from SLAM, the robot makes
navigation decisions

● Which plant to spray next, how to get there

Path Planning with OMPL

● OMPL (Open Motion
Planning Library)

● 20-30 planners
● Various state spaces

supported, e.g., SE
(n), kinematic car
model, Rn

OMPL Planners: RRT
● Introduces the concept of a tree-based

planner
○ Starts from the initial state and

randomly walks outward, making
sure not to collide with obstacles

● Can improved by simultaneously
growing two trees, one from the initial
state and one from the goal state

Source: S. M. LaValle's Planning Algorithms,
p. 230

OMPL Planners: PDST
● Another tree-based planner
● A score is assigned to each cell

of the state space based on its
volume and a ��priority��
measure

● When moving from sample to
sample in the search, the ��
next sample is defined as the
one with the lowest score

OMPL Planners: KPIECE
● Tree-based planner
● Takes the state space and

projects it into a grid
● There are multiple levels of

grid, each lower level
constructed by chopping up��
the grid at the previous level

● The figure from the authors of
KPIECE illustrates the multiple
levels of discretization

OMPL Planners: Results on Dummy Map

OMPL Integration Status
● Basic problems with the robot, such as the

○ odometry resetting incorrectly
○ other low-level issues such as frayed wires

● Focus is on repairing low-level basic functionality before
testing full functionality

● OMPL to be integrated after low level problems fixed

Current Status Video

http://www.youtube.com/watch?v=noCCOA1GVSc

Next Steps

● Resolve all low-level issues with robot
● Integrate OMPL into current navigation code

for robust path-planning
● Test integrated SLAM on robot
● Test plant detection on data from Kinect 2

Robot in the Wild

Questions?

