Agribot

Sprayer, SLAM, and Robust Navigation

Andrey Kurenkov, Troy O’Neal, Pavel Komarov

Agribot Robot Design

110 watt sprayer with 180° range
of motion

Problem Statements:

1) SLAM (localization,
mapping, and plant
detection)

2) Plan a path to goal
location, avoid obstacles

3) Design and aim of liquid aeme
sprayer

SICK 200 LIDAR

Wireless 802.11 communicatio Top speed of 2.5mph

Sprayer Design

-

Initial Sprayer Layout Final Sprayer Assembly

Sprayer Inverse Kinematics

deltas = Rx(al)*Rz(a2)*[0; 13+a3; 12] + Rx(al)*[0; 11; O]

deltas =

-sin(a2)* (a3 + 13)
li*cos(al) - 1l2*sin(al) + cos(al)*cos(a2)* (a3 + 13)
12*cos(al) + 1ll*sin(al) + cos(a2)*sin(al)* (a3 + 13)

Sprayer Embedded Control

//Convert spray coordinates in to joint angles

float
float
float
float
float

//Use

Jvoid get_coords(spray_data *spray) { Zﬁ\X

dist, den, lx, num;

angles[] = {

dx = spray->x
dy = spray—->y
dz = spray->z
relationships

0.0,0.0}; Ay

- X _OFFSET;

- Y OFFSET; A 2

- Z_OFFSET; -

derived on paper to calculate alphas in terms

//of these deltas and lengths
dist = sqgrt(dx*dx +
angles[l] = asin(-dx/(dist+L3)) *120/PI;

dy*dy + dz*dz - L1*L1 - L2*L2) - L3;

1x = (dist+L3) *cos(angles[l]1*PI/120)+L1;
num = (dz>02-1:1)*sgrt(((dy/dz)*(dy/dz) + 1) *(lx*lx + L2*L2)) + lx*(dy/dz) + L2;
1x - L2*(dy/dz);

den =

angles[0] = (-2*atan(num/den))*120/PI;

spray->phi_2=150+(int)angles[0];
spray->theta_1=150+(int)angles[1];

(0304, b)

] (vc;+ ,/}) (o (1) -t ()4 /1 sh (x,) */, ¢h (aJ

(0(34,/)) u,,(“l)-ws [(X\) "/1 sth (“1) *[fOY(l)

9

.

Sprayer IK Simulation

100
80 J
60
40
20

-50

50

(30, 100, 100)

y

50

100

-20 -
40+
604
80~
100

100

(0, 100,- 100)

Gravity-Compensating IK

; {l(/‘(xm)/nllﬂ) l: 1/}1/1—1/-:&%1.;}“{%;;? 3 117‘_*-5—21
ol Q0 o

SLAM and Plant Detection

Problem:
Simultaneous
Localization

and Mapping with
plant detection

Want to combine:

Kinect 2

Odometry
LIDAR

|(interact |G Move Comera [Jselect < Fowus Camera e Measure 7 2DPoseEstimate 7 2DNavGoal @ Publisheont =

3 Displays x

» @ Global Options

» v Global status: Ok

> ® Grid

» B8 camera

» [@ RGB Image

» [@ Depth Image

» . LaserScan

> TF

» % Robot Trajectory
anes

@l RGB Image

ive Frame (depth re.
inect Map
isualization Marker .
%° Pose Covariances
Evaluation Interactiv..
valuation Live Frame

» | RGBImage | Camera

[@ Depth image
Global Options
Add Remove || Rename
@ Views x
Type: | XYOrbit (rviz) 3 Zero

v Current View XYOrbit (rviz)
NearClip... 0.01
Target Fra... base_link
Distance 18.3293

Yaw 5.24415
pitch 0.795204
» Focal Point -1.1504;-10.859; ...
> XYOrbit XYOrbit (rviz)
> FPS FPS (rviz)
save Remove | | Rename .
Reset 30fps

Visualization of SLAM from OmniMapper

Summary of ROS-based SLAM

e RatSLAM

o Bio-inspired SLAM
o Combines of monocular images and odometry

e L|LSD-SLAM

o Purely monocular SLAM
o Uses direct image alignment

e RGBD SLAM (V2)
o Uses RGBD (RGB-Depth) data
o Uses the RBG feed with RANSAC

e RTAB-Map
o Builds on RGBD SLAM
o Adds support for multi-session and large-maps

e MonoSLAM
o Monocular SLAM, standard 1-point RANSAC
with an Extended Kalman Filter for motion
o Inverse depth parametrization to get the 3D point
locations for mapping.

...............

uuuuuuuuuuuuuuuuuuu

ERELE EFELEE

4

ApoEEEN

IsdSLAM demo output

OmniMapper

e OmniMapper is a framework for SLAM

@)
@)
©)

A plugin-based architecture; allows different sensor types to be combined for SLAM.
The only real ROS-based SLAM framework for sensor fusion

"The key contribution is an approach to integrating data from multiple sensors ... so all
measurements can be considered jointly."

e OmniMapper has the “backend” of Square Root Smoothing And Mapping

O

GTSAM implements the SLAM by optimizing the robot trajectory and landmark positions
with a factor graph-based approach

The factors can be different sensors or other variables

Rather than optimizing just for the latest pose measurement the "smoothing" part of the
approach means that the entire trajectory is continually optimized with new input.

Kinect 2

Feature Kinect for Windows 2
Color Camera 1920 x 1080 @30 fps
Depth Camera 512 x 424

Max Depth Distance ~4.5M

Min Depth Distance 50 cm

Horizontal Field of View 70 degrees

Vertical Field of View 60 degrees

Tilt Motor no

Kinect 2 has is an RGBD sensor

OmniMapper has a plugin for generic 3D
iterative closest point (ICP)

Finds overlap between sequential point clouds.
ICP in OmniMapper is based on PCL

wall Time: [1427030534.90

Kinect 2 Point Cloud

J " MoveCamera [JSelect - FocusCamera == Measure 2DPoseEstimate .~ 2DNavGoal @ PublishPoint ¢ =

SLAM with Kinect 2

e Easily Integrated ®
within ROS launch i

» B camera
» @ RGB Image

filestparameters -

e Static transform —
publisher node for =

Kinect 2 frame

v
RS
QR IO00]

» ¥ Evaluation Live Frame

e Low Frequency il
(about ~1 Hz) 3
e Error for fast

movement

»m Views

©) Need high_ TyDXVOrbit(rVIZJ all Zm >

Distance 314785

frequency
Odometry [

» Focal Point 0.062669;-0.482...

» XYorbit Xorbit (rviz)
> FPS FPS (rviz)

Bl save || Remove || Rename

Bl Reset 30fps

Output of SLAM with just Kinect 2

SLAM with Odometry

Seeker Jr Robot Has Encoder-based Odometry built in (x,y,yaw)

Odometry added to SLAM with ROS tf Straightforward code for sending tf

OmniMapper is also configured to use a transform from Odometry as an tfBroadcaster = new tf::TransformBroadcaster();
input to SLAM: A
void odometry_update(){

<param name="odom_frame_name" value="/odom"/> double ex = robot->getEncoderX() / MM_IN_M;

<param name="use_tf" va11.1e="true"/> double ey = robot->getEncoderY() / MM_IN_M;

<param name="tf_trans_noise" value="0.05"/> double et = to_radians(robot->getEncoderTh());
<param name="tf_roll_noise" value="10000"/> tf::Transform transform;

<param name="tf_pitch_noise" value="10000"/> transform.setOrigin(tf::Vector3(ex, ey, 0.0));
<param name="tf_yaw_noise" value="0.2"/> tf::Quaternion q;

q.setRPY(0, 0, msg->et);

transform.setRotation(q);

tfBroadcaster.sendTransform(tf: :StampedTransform(transform,
ros::Time: :now(), "odom", '"agribot"));

Plant Detection with PCL

e Need to somehow find plants within sets of 3D points
O Simplifying assumption: plants are surrounded by empty space

Use PCL to implement Euclidean Clustering+cloud filtering

Filter out noise by removing statistical outliers
Downsample to simplify cloud

Filter out points below some threshold (remove ground)
Build KDTree on this Point Cloud

Perform Euclidean Clustering to find plants

bR~

PCL Results in Synthetic point cloud

Initial Cloud Statistical Outliers Removed

PCL Results in Synthetic point cloud

Downsampled Cloud Height Thresholded Cloud

PCL Results in Synthetic point cloud

Found Clusters Found Clusters in noisier cloud

LIDAR

e SICK 200 (laser scan)

o Made to work with sick toolbox
o Allows us to detect obstacles

LMS200/LMS221/LMS291

last value first value

Scanning angle 180°

Full Integrated SLAM

LIDAR integrated as with other sensors

<node name="sick_node" pkg="sicktoolbox_wrapper" type="sicklms"
respawn="false" output="screen">

<param name="port" value="/dev/ttyUSB0O"/>
</node>

Then, in the omnimapper launch parameters, this is straighforwardly added:
<param name="use_csm" value="true"/>

As can be seen in the OmniMapper source code, this makes the package
subscribe to the output of the the created sicklms node (which outputs to
the topic "scan"):

if (use_csm_)

{
// Subscribe to laser scan
laserScan_sub_ = n_.subscribe ("/scan", 1,
&0mniMapperR0OS: :laserScanCallback, this);

Due to hardware problems on the robot, not yet
tested

LIDAR Obstacle Detection

Implemented simple distance-based approach to LIDAR obstacle detection

void lidarCallback(const sensor_msgs::LaserScan::ConstPtr& msg) {
obstacleInFront = false;
for(int i=0; i <msg->ranges.size();i++){
float dist = msg->rangesl[i];
float angle = msg->min_angle + i*(msg->angle_increment) ;
if (angle>-20 && angle<20){
if (range<OBSTACLE_DIST_THRESHOLD) {
obstacleInFront = true;
break;

Navigation

e Based on data from SLAM, the robot makes
navigation decisions
e \Which plant to spray next, how to get there

Robot
navigates
along rows

Plants are
individually
targeted and
sprayed

Path Planning with OMPL

e OMPL (Open Motion
Planning Library)

e 20-30 planners

e \arious state spaces G5
supported, e.g., SE o

(n), kinematic car o X
model, R" — —

Figure 5: Results of using PRM planner with SE(2) object.

OMPL Planners: RRT

e Introduces the concept of a tree-based
planner
o Starts from the initial state and
randomly walks outward, making
sure not to collide with obstacles
e Can improved by simultaneously
growing two trees, one from the initial
state and one from the goal state

45 iterations 390 iterations

Source: S. M. LaValle's Planning Algorithms,
p. 230

OMPL Planners: PDST

e Another tree-based planner

e A score is assigned to each cell
of the state space based on its
volume and a [JLIpriority][]
measure

e \When moving from sample to
sample in the search, the [I[\ A
next sample is defined as the
one with the lowest score —

OMPL Planners: KPIECE

e Tree-based planner
e Takes the state space and
projects it into a grid

e There are multiple levels of ﬁ
grid, each lower level
constructed by chopping up1C =
the grid at the previous level £

e The figure from the authors of o
KPIECE illustrates the multiple
levels of discretization

OMPL Planners: Results on Dummy Map

Platter Type Planning Time (Min) Path Time (20S planning)

KPIECE 7s 65s
EST 5s 51s
PDST 6s 44s
RRT 1s 63s

Table 1: Constraint robustness results by skill type.

OMPL Integration Status

e Basic problems with the robot, such as the
o odometry resetting incorrectly
o other low-level issues such as frayed wires

e Focus is on repairing low-level basic functionality before
testing full functionality

e OMPL to be integrated after low level problems fixed

Current Status Video

http://www.youtube.com/watch?v=noCCOA1GVSc

e Resolve all low-level issues with robot

e [ntegrate OMPL into current navigation code
for robust path-planning

e Testintegrated SLAM on robot

e Test plant detection on data from Kinect 2

Robot in the Wild

Questions?

