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SUMMARY

Keyframe-based Learning from Demonstration has been shown to be an effective

method for allowing end-users to teach robots skills. I propose a method for using multiple

keyframe demonstrations to learn skills as sequences of positional constraints (c-keyframes)

which can be planned between for skill execution. I also introduce an interactive GUI which

can be used for displaying the learned c-keyframes to the teacher, for altering aspects of the

skill after it has been taught, or for specifying a skill directly without providing kinesthetic

demonstrations. I compare 3 methods of teaching c-keyframe skills: kinesthetic teaching,

GUI teaching, and kinesthetic teaching followed by GUI editing of the learned skill (K-GUI

teaching). Based on user evaluation, the K-GUI method of teaching is found to be the most

preferred, and the GUI to be the least preferred. Kinesthetic teaching is also shown to result

in more robust constraints than GUI teaching, and several use cases of K-GUI teaching are

discussed to show how the GUI can be used to improve the results of kinesthetic teaching.

The results indicate the benefit of K-GUI teaching over kinesthetic teaching, and suggest

that more robust constraints may be needed to more flexibily represent skills and allow for

a more intuitive GUI.
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Introduction

The goal of Learning from Demonstration (LfD) research is to to enable people with no

specialized robotics knowledge to teach robots new skills [1]. Complex humanoid robots are

capable of a broad range of skills that could assist humans in both industrial and domestic

settings, yet programming these skills requires specialized knowledge and is time consuming.

LfD strives to enable robots to learn skills from human demonstrations, and for the learned

skills to be usable in environments and contexts not shown during teaching.

A common means of providing demonstrations is kinesthetic teaching, in which the

teacher physically guides the robot through a skill. These physical demonstrations can be

used to show the skill as a full trajectory, a series of positions (known as keyframes) from

the full motion, or a hybrid of both [2]. Several such demonstrations can be given, so

that the robot can learn a better model of the skill. Multiple demonstrations can result

in a better skill model, since they lessen the impact of bad demonstrations and enable the

learning of sets of constraints that describe the skill as generally as possible [3]. Keyframe

demonstrations have been shown to be more comfortable for people when giving multiple

demonstrations [2]. Alexandrova et al. have also shown that keyframes from a single

demonstration can be visualized in an interactive GUI to allow users to directly edit the

keyframes of the model [4].

Though splining between keyframes can be used for executing the skill, this approach is

not robust to obstructions in the environment not seen during teaching. Though Alexan-

drova et al. have shown that a visual representation of keyframes can clearly communicate

the robot’s model of a taught skill, and so allow the teacher to make any needed corrections

after kinesthetic teaching, their representation only uses the end effector poses from a single

keyframe demonstration and so suffers from this lack of robustness to obstacles [4]. In this

work I propose the constrained-keyframes (c-keyframes) skill representation, which can be

executed by using motion planning and so allow the skill to be executed despite obstructions

in the environment. I describe how c-keyframe skill models can be learned from multiple

keyframe demonstrations and how they can visualized in an interactive GUI for editing. I
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(a) Kinesthetic Teaching (b) GUI Teaching

Figure 1: Example of teaching to place a cup on a platter in the two teaching modes with
our robot platform, Curi.

also compare three teaching methods for c-keyframe skills: kinesthetic teaching, GUI teach-

ing, K-GUI teaching. Comparing the different teaching approaches is useful for evaluating

which approach is best suited for LfD, and investigating whether a GUI without kinesthetic

interaction is sufficient for teaching skills. I report the results of a study which show that

users both prefer and are in some cases more effective at specifying skill constraints using

K-GUI teaching, and that though they are able to use the GUI for teaching skills they

prefer and are better at using the more intuitive kinesthetic teaching approach.

LfD Survey

The goal of Learning from Demonstration (LfD) research is to to enable people with no

specialized robotics knowledge to teach robots new skills [1]. Complex humanoid robots such

as Curi ?? are capable of a broad range of skills that could assist humans in both industrial

and domestic settings, yet programming these skills requires specialized knowledge and is

time consuming even for roboticists. LfD simplifies the task of adding new skills to robots

by having them learn these tasks from demonstrations given by humans, which can be done

with no programming or robotics knowledge. Furthermore, LfD strives to require as few

demonstrations as possible by creating generalized models of tasks that can be used in

environments and contexts not seen during learning.
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The definition of LfD is purposefully ambiguous with regards to how the task is demon-

strated and how it is represented, since multiple approaches to LfD with different methods

of demonstration and action representation have evolved since its inception in the 1980s. It

is also important to note that LfD strives to have robots learn a robust model of the task

that can be adapted to contexts not seen in any teaching demonstrations. Furthermore,

LfD techniques generally seek to learn good models of the task even if some demonstrations

are flawed. Therefore, it is not sufficient to have the robot learn a single trajectory or set

of trajectories that is then executed in exactly the same way thereafter, as is common in

industrial robotics [5].

LfD was originally inspired by human learning by imitation, and was in fact called that

in a 1996 survey of the topic by Bakker and Kunyoshi [6]. The motivation for learning by

imitation is to have a third approach to teaching a robot to perform a certain skill and

have this approach be easier than direct programming and more reliable than independent

robot learning. Learning by imitation is defined to have three necessary steps: observing,

representing, and reproducing an action. The ability to adapt to new situations was also

cited as being important. The first approach offered by Kuniyoshi and Inaba involves

the robot observing a teacher completing an assembly task and creating a hierarchical

symbolic representation of the task using pre-defined primitive skills. Observation of the

demonstration is done with a computer vision method as well as a special worn glove, which

allows the robot to extract the state at any point during the demonstration and learn the

sequence of primitive skills that match the more complex demonstrated skill. The approach

is validated using a table constructions task, in which the starting locations of different

components are varied but the learned skill is robust enough to be executed successfully [7].

The other two early methods for learning by imitation covered in the 1996 survey involve

robots directly imitating another agent by observing its actions and repeating them. These

approaches are considerably more limited than the planning based approach of Kuniyoshi

and Inaba, since they are based on repetition of observed tasks that works with a simple

domain such as a maze but would fail in a more complex domain such as assembly where

the initial parts may begin in different positions [6].
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Atkenson and Schaal used the term Learning from Demonstration for their work, though

the motivation behind it is the same as that of learning by imitation. Their work demon-

strates an approach to LfD that does not involve learning a model of the task to be able

to execute it later, and that instead uses the demonstrations to create a reward function

to guide the robot in a policy search [8]. The concepts of policy search based on a reward

function comes from the Machine Learning field of Reinforcement Learning, which repre-

sents a task as a mapping between states and actions. The appropriate mapping can be

found if a reward function exists for transitions between states, since an initial policy can be

chosen and iteratively improved until expected reward is maximized. Atkenson and Schall

use demonstrations both to create the reward function, by rewarding the robot being in

states found in the demonstration, and to use them for creating the initial policy. Unlike

the previous approaches, this one is meant for learning continuous manipulation skills such

as swinging a pendulum. Their experiments demonstrated several important findings: that

merely mimicking the demonstrated human actions is not sufficient for good execution due

to modeling error, that reinforcement-learning approaches perform better than direct mim-

icking but may still not converge if the task is modeled incorrectly, and that incorporating

task level learning (which uses parameters from the task’s object instead of just the robot

state) assisted with learning better than reinforcement learning alone. Many variations on

using Reinforcement Learning for Learning from Demonstration exist, with a notable one

being the approach of inverse reinforcement learning which derives a reward function using

demonstrations and features from the skill [9].

Dillmann et al. suggest a classification approach for LfD (referred to as PbD, for Pro-

gramming by Demonstration) systems that covers the distinctions betweed LfD approaches

discussed above: whether the skill being taught is a high-level sequence of actions or a basic

trajectory, the form of demonstrations given, how the skill is internally represented by the

robot, and whether the skill execution is based on direct execution from the skill repre-

sentation or an additional planning step is used the action can be executed[10]. They also

criticize existing approaches up to that point for not generalizing, not allowing observation
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of skills on a non-abstract level, and not having a validation and feedback means. To ad-

dress this, they propose a complex LfD system with a Machine-Learning based observation

system for human actions and support for teacher feedback to improve the learned action.

Nicolescu and Mataric likewise criticize existing approaches to LfD for ignoring feedback

cues and generalization. Similarly to [7], their proposed solution is based on learning high-

level complex actions built from an existing set of primitive skills, linking observed effects

at each stage of the skill to effect of primitive actions[11]. Unlike prior approaches, the

robot does not just observe the teacher but is rather led through an execution of the skill

by the teacher during the demonstration. These two forms of demonstration were later

categorized as imitation teaching, in which the a robot just observes a demonstration of

the skill through either external observation or sensors on the teacher, and demonstration

teaching, in which the robot directly senses the demonstrations through either teleoperation

or shadowing. Knowledge about the primitive skill set and feedback cues are used to cut

down the set of observations, and a standard longest common subsequence algorithm is used

to find a generalized model of the skill from multiple demonstrations [5]. Finally, like [10]

this approach follows the initial learning of a generalized model of the skill with the teacher

observing the robot performing the learned skill and possibly providing feedback cues that

further improve the learned skill model. The benefit of teacher critique of the learned skill

has also been argued for and experimentally supported in more recent work [12][13].

The above works demonstrate the broad categories into which LfD systems fit, though

there are many different learning approaches and skill representations that fit into these

categories in different ways. Examples of more novel LfD systems include one inspired

by neural mechanisms [14] and one that uses a more sophisticated representation of skills

through gaussian mixture models [15]. A topic of research gaining increasing attention is

using these LfD techniques together with systems that allow for the creation of demon-

strations in a virtual environment. Demonstration in virtual environments provides several

benefits: they vastly simplify tracking of the teachers’ actions, all sensor noise is eliminated,

it can be done without physically being near the robot, and the ability to simulate the task

in the same virtual environment in which it was taught [16]. However, virtual environments
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present the drawbacks of requiring modeling of the skill’s environment and limiting the

ability of the user to potentially less intuitive input modalities. Despite these drawbacks,

demonstrations may still be easier to give in virtual environments than in the real world

with the use of ”virtual fixtures,” which are additional visual or other feedback signals pro-

vided to the teacher to as guidance or clarification of what the robot is learning from the

given demonstration. An additional benefit is that the ability to give demonstrations from

a distance means demonstrations can potentially be supplied by many more teachers over

the internet, and the quantity of such demonstrations will overcome any decreased quality

in the demonstrations [17].

Related Work

There has been extensive research done in LfD on learning skill policies as well as approaches

for recreating smooth trajectories from either one or multiple demonstrations. A topic that

has been researched less extensively is the use of LfD for learning skills as sets of constraints

that can be used with classical and motion planning. Constraint extraction has been done

for finding appropriate reference frames as well as relevant objects for sequences of skill

primitives that are learned from segmenting multiple demonstrations [3]. Demonstrations

have also been used to guide motion planning by speeding up constrained planning based on

experience graphs [18] and by learning time-dependent task constraints from demonstrations

which can be used by a sampling-based planner to match the demonstrations while avoiding

novel obstacles [19]. Demonstrations have also been used to learn appropriate constraints

for task-level skill models [20], and have been used for learning new task-level concepts that

could be used as goal constraints [21].

LfD research also encompasses the question of how users can best provide demonstrations

of skills to robots. In [22], user satisfaction with a dialog-based interface for providing

demonstrations is evaluated. In [2], a similar interface is used and keyframe demonstrations

are proposed and evaluated as an alternative to trajectory demonstrations. Users did not

prefer one method significantly over the other, except that keyframes were preferred to

trajectories for teaching with multiple demonstrations. An interactive GUI for editing
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the positions and reference frames of keyframes recorded from a single demonstration is

suggested and shown to be helpful for users in [4]. This GUI is also evaluated in the context

of fixing the aspects of demonstrations through a ”crowd” of users using a cloud-based web

interface[23]. A cloud framework has also been suggested for full teleoperation and ability

to give demonstrations remotely, which could simplify gathering many demonstrations [?].

There is a need for LfD that enables the execution of actions through motion planning,

since that allows skills to be executed independently of how they were demonstrated and

so naturally be adapted to new environments and objects. Though several approaches have

been proposed for using trajectory demonstrations to extract time-dependent information

to guide motion planning, no work has yet proposed an approach for learning a discrete

sequence of constraints to plan between for skills that can be taught with keyframe demon-

strations. A discrete set of constraints has the benefit of being possible to fine tune without

further demonstrations, and for possibly being more adaptable to new objects and environ-

ments. In this work I propose the c-keyframes skill representation, which is composed of

sequential constraints on end effector positions and can be learned from multiple kinesthetic

keyframe demonstrations. Additionally, I show how skills can both be edited and directly

specified in an interactive GUI similar to that of [4], but that allows for editing skill con-

straints rather than end effector poses. The GUI is evaluated for its usefulness in teaching

robots without requiring to be physically near them, and as a means for improving upon

kinesthetic teaching.

Skill Representation

The c-keyframe skill representation follows from the nature of keyframe demonstrations.

Keyframes for end effectors only encode a single pose, whereas c-keyframes have a space

of possible poses for the end effector defined with a box-shaped positional constraint and a

single associated orientation. The benefit of using positional constraints is that they can be

easily learned from multiple kinesthetic demonstrations, can be intuitively visualized in an

interactive GUI, and can be directly used with the OMPL motion planning library for skill

execution [24]. Because they are made up of a box-shaped position constraint and a single
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Figure 2: Visualization of a single c-keyframe and 3 possible end effector poses defined by
it. A pair of arrows defines the end effector orientation.

orientation, c-keyframes can be easily visualized by a combination of a box and two arrows

as shown in Figure 2. ROS markers and rViz were used to create this visualization [25].

Skill Teaching Methods

Kinesthetic

A set of keyframe demonstrations, as in [2], for the same skill can be used to find its c-

keyframe representation. To do so, the keyframes from all the demonstrations are first

clustered. In this work I used a tuned version of k-means clustering with k being set to

the rounded average of the number of keyframes from all the demonstrations, though a

more robust approach based on Gaussian Mixture Models could also be used [2]. The k

centroids are initialized to the keyframes closest to the average of the set of keyframes with

the same sequence number from demonstrations with at least k keyframes. Next, a box

constraint from each cluster can be found by extracting the minimum volume box that

encloses all the keyframes in that cluster and has the center of those keyframes. This is

done by performing Principal Component Analysis on the the keyframes, and using the

resulting principal components to define the orientation of the box. The scale of the box

along each principal component is set to be large enough to reach the farthest keyframe

along that component. An orientation can also be found from each cluster by averaging

the orientation of all the keyframes in it. The combination of the box position constraint
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Figure 3: Image showing a set of clustered keyframes. The arrows are the PCA components,
and the minimum volume enclosing box is shown.

and orientation form a c-keyframe from each cluster, and the order of the c-keyframes is set

based on the average keyframe sequence number of the keyframes within each cluster.

GUI

Constrained keyframes can also be directly specified through a GUI, avoiding the need for

any demonstrations. As shown in 4, the GUI is implemented using a combination of a

Java-based GUI for text input and buttons as well as interactive markers in rViz which

display the keyframes and allow them to be moved and rotated. The c-keyframes can also

be selected for editing by directly clicking on the box of the keyframe in rViz. The buttons

on the Java GUI include the functions for keyframe creation, precise positioning and sizing,

setting the hand to close or open, and attempting to execute the skill specified by the current

set of c-keyframes. Motion planning is done using the OMPL motion planning framework,

which supports setting goals based on positional constraints. Reference frames are not yet

specified, since the focus of this study is on specifying constraints, though that aspect could

be included in the GUI as in [4].

K-GUI

Based on the two previous methods for creating and editing c-keyframes skills, it is straight-

forward to first teach a model of a skill with kinesthetic demonstrations and then edit it

in the GUI. Unlike in the GUI-only approach, the GUI in this teaching method is used
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Figure 4: Interactive GUI for directly specifying constraints. A java based GUI allows the
user to create new keyframes and their position and size. It also allows to specify whether the
robot’s hand should be closed and to preview the skill with simulated execution. Interactive
markers in rViz are used to be able to edit the position and rotation of keyframes.

to correct any flawed aspects of the skill learned from demonstrations. The GUI can also

be used to expand c-keyframes to cover as much area as possible, and therefore teach the

skill as robustly as possible. In every K-GUI teaching scenario, the objects involved in the

kinesthetic teaching tasks should exist in the rViz environment as well.

User Study

I conducted a user study with 10 participants, who were undergraduate and graduate stu-

dents with no experience in robotics at the Georgia Institute of Technology. The purpose
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of the study was to evaluate which methods of teaching novice teachers prefer and are good

at for teaching c-keyframe skills.

Study Protocol

Each study participant was tasked with teaching a single skill using each of the teaching

methods. Three skills with appropriate for the c-keyframe representation were chosen:

placing a cup anywhere on a platter, pouring liquid from a cup into a bowl, and closing

the lid of a box. Before teaching with each method, the participants were guided through

a practice task of placing a cup on the edge of the table. It was explicitly explained that in

kinesthetic mode they should give a range of demonstrations to show different places the

cup can be put down along the edge of the table, and that in the GUI mode the keyframe

for placing down the cup should be made large enough to cover the entire edge of the table.

The order of teaching methods was counterbalanced, and the instructions given for each

skill during practice were kept the same regardless of the order. The order of which skills

were taught was kept the same for all participants, since the intention was to compare the

teaching methods and it was not expected that the order of skills would affect that. A time

limit of 10 minutes was placed on each teaching method, but otherwise it was left up to

the participant to decide how many keyframes or demonstrations were appropriate while

teaching.

Metrics

Metrics were collected for evaluating the speed, difficulty, user preference, and constraint

robustness for each teaching method. To evaluate teaching speed, users were timed during

each teaching interval. Perceived difficulty and preference were evaluated using a survey

filled out by participants afterwards. People were also asked to respond to the free-form

question “Based on your experience, comment on the pros and cons of each mode of teaching

for teaching skill constraints.” The robustness of the learned skills was evaluated based on

how many different virtual environments with different collision objects the resulting skill

could be planned with succesfully.
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Figure 5: Measured speed of each teaching mode.

Results

Speed

The measured times are shown in Figure 5. Participants were allowed to at most use 10

minutes of teaching time for each skill, and were told to take about a minute to finish

teaching when they reached 9 minutes of teaching. Counterbalancing of the order of the

teaching methods, and so which which skills were taught with each method, was done in

order to account for variable difficulty of teaching skills. A clear and predictable result is

that K-GUI teaching takes longer than kinesthetic teaching by itself. On average, the GUI

teaching took about the same amount of time to use as kinesthetic teaching. Kinesthetic

teaching times varied due to the users choosing to provide different numbers of demonstra-

tions, and GUI teaching times varied due to users choosing to spend different amount of

time fine tuning the taught skill.

Difficulty

The collected difficulty evaluations are presented in Figure 6. On average the GUI mode

of teaching was evaluated as being the most difficult, and kinesthetic the easiest. Though
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Figure 6: Difficulty evaluations from survey.

this matches with our expectation, due to the low sample size the result is not statisti-

cally significance. However, several participants comments also indicates that kinesthetic

teaching was easiest. For example: “Kinesthetic seems more intuitive”,“kinesthetic helps

to teach to me as the user exactly what is required for success (this is hard to simulate

on the computer)” “Easy to learn,Intuitive.” The comments concerning the GUI reflected

greater difficulty. For example: “Harder to use software”, “little bit hard using GUI to

adjust the position or camera”, “Just GUI gives us more freedom, but it might not be that

intuitive.”, “For just GUI, it could be accurate but not realistic or hard to teach compared

to kinesthetic with GUI.” Users appeared to have most difficulty in the GUI with moving

the camera and the keyframes in 3D space.

Preference

Preference was measured through the survey with the question “If you had to teach another

task to the robot, which mode of teaching would you choose.” The answers to this question

are as follows: 0 chose GUI, 3 chose kinesthetic, and 7 chose K-GUI. Thus, K-GUI is chosen

significantly more often as most preferred (χ2, p < 0.01 compared to random chance). The

GUI mode of teaching was the least preferred mode in accordance with it being the most
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(a) GUI platter model (b) Kin+GUI Box Model

Figure 7: Examples of model evaluation.

difficult, though users commented that the GUI had the benefit of allowing them to be

more accurate than kinesthetic teaching. Despite the K-GUI mode being on average slower

and more difficult to use than kinesthetic teaching, it was selected as the most preferred

approach. The preference for the K-GUI model was explained in several participant com-

ments: “I prefer kinesthetic [combined with GUI] because it is easy to teach at first and

then one could amend actions that seems problematic through GUI”, “working in the GUI

allows to tweak motions from kinesthetic...” These results are in line with what has been

shown in [4], where users considered a GUI for editing the keyframes of a single keyframe

demonstration to be useful for visualizing exactly what has been learned and being able to

edit it. Here I are showing the utility of skill visualization and editing for our more general

skill representation.

Constraint Robustness

Figure 7 shows the process by which the skill models that were stored from the user study

were evaluated for constraint robustness. This was done by attempting to plan with each

model in a total of 15 simulated test environments with different collision objects added to

the scene. Grasping of the cup as well as the physics of the box’s lid were not simulated, so

the goal of planning was only to move the end effector based on the keyframe constraints.

It is expected that the success rate of taught skills at correctly executing the action will
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Participant Mode Order GUI Kinesthetic K-GUI

Participant 1 G-KG-K 7/15 13/15 12/15
Participant 2 G-KG-K 9/15 13/15 9/15
Participant 3 K-G-KG 5/15 7/15 0/15
Participant 4 KG-K-G 9/15 6/15 14/15
Participant 5 G-kG-K 7/15 4/15 13/15
Participant 6 KG-G-K 6/15 11/15 14/15
Participant 7 K-KG-G 5/15 10/15 6/15
Participant 8 G-K-KG 11/15 7/15 4/15
Participant 9 K-G-KG 0/15 10/15 5/15
Participant 10 KG-G-K 0/15 11/15 12/15

Average NA 5.4 9 8.9
Standard Deviation NA 3.3 3.7 5.1
Total NA 59/150 92/150 89/150

Table 1: Constraint robustness results from simulated tests of skills in multiple environ-
ments. Skills were always taught in the order platter-pour-box.

correlate with this measure. The result of this evaluation process are shown in Table 1.

The GUI method of teaching has the lowest average number of successful planning

attempts and the lowest standard deviation for this result of the three, despite allowing

for direct sizing of the keyframes. This may be because participants often did not elect to

resize the keyframes, which resulted in planning not being possible when obstructed when

collision objects are present. As can be seen on Table 2, the GUI results are least successful

for the pour task; this may be because resizing the constraints was not as straighforward

as the platter task.

Kinesthetic teaching has a slightly higher average numbers of successful planning results

compared to K-GUI. Additionally, on average the skill models from K-GUI teaching prior to

GUI edits have more planning successes than after editing has been done. However, K-GUI

teaching has higher standard deviation in both measures due to several particularly bad

skill models from participants 3, 8, and 9 for the box skill. From Table 2, it can be observed

Skill Type GUI Kinesthetic K-GUI

Platter 56.6% 60.9% 88.8%
Pour 18.3% 37.7% 60.0%
Close Box Lid 73.3% 80.0% 36.6%

Table 2: Constraint robustness results by skill type.
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that these bad skill models result in K-GUI having a much lower success percentage for the

box skill despite it being higher for the other two skills. Due to the small sample size of

the study and natural variation in user performance it cannot conclude whether K-GUI has

no advantage over kinesthetic teaching or if the bad skill models are outliers and K-GUI

otherwise presents a benefit over kinesthetic teaching. However, example use cases from the

study support the idea that the GUI is either not used to alter the kinesthetic model or is

used to improve it.

Qualitative Results

Several use cases can be used to explain why the GUI had the lowest success rate for

constrained planning. Figure 7a presents an example of the platter skill in which users

made the placement keyframes as large as possible by using the GUI’s resizing feature to

correctly specify that the cup can be placed anywhere on the platter. However, participants

did not consistently use the GUI’s resizing capability as in that example despite being

explicitly guided to resize a keyframe for the practice task. Figure 8 illustrates several

models where the users either did not resize the keyframes as much as possible or did not

resize them at all from the default size. A possible reason for this is that although it was

stated that the users should attempt to teach the robot how to do the skill as generally

as possible, some users focused more on adjusting the keyframes so planning in simulation

(a) Platter skill (b) Pour skill

Figure 8: Examples of limited GUI models.
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would successfully execute. This suggests that in the future it would be beneficial to use

simulated test environments like the ones used in our evaluation during the training phase,

to encourage teachers to think about their model’s generality.

(a) Before - the cup grasping
keyframe is too large.

(b) After - the user has edited that
keyframe.

(c) Before - too few keyframes were
saved.

(d) After - the user added missing
keyframes.

(e) Before - two thin keyframes over
the platter.

(f) After - the user enlarged a
keyframe over the platter.

Figure 9: K-GUI models before and after GUI edits.
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K-GUI teaching similarly resulted in participants not consistently resizing the keyframes

to reflect their full allowed size. Participants either did not do any significant editing to

the kinesthetic models or fixed perceived problems with them. Those who did not edit

the skill usually executed the skill in simulation in order to see what the robot learned,

but elected not to make more changes after that. However, some participants did use the

GUI to improve kinesthetic models as designed, seen in Figure 9. These cases illustrate the

capacity to use the GUI to fix problems in kinesthetic skill models, which the quantitative

planning success metric does not capture. Additionally, participants’ preference of K-GUI

teaching even despite ranking it harder and it taking longer suggests is a strong indication

that having such a hybrid approach worth exploring.

Post Study Evaluation

After the study concluded, additional work was done to test the ability of the saved skill

models to be executed on Curi. A new GUI was written to enable the loading of saved

models and demonstrations, and the execution of those models in both rViz and on the

actual robot. The execution code was implemented by converting the ROS motion plans

into a trajectory demonstration format, and using pre-existing code for making Curi execute

this trajectory. In order to plan valid trajectories, the positioning of the virtual table object

was adjusted to match that of the physical table in the lab and the objects involved in the

skill were positioned according to where they were during the study.

When attempting to execute several skill models, many attempted executions that

looked like they should work in rViz did not work on the actual robot. In several cases

offsets that were added to the height for planning resulted in the hand going above the cup

and failing to grasp it, and in other cases the hand moved too close to the table or even hit

it. Several aspects of the implementation could be improved in order to make execution on

Curi more reliable:

• Perception with the Kinect should be used during demonstration recording to save

the exact locations of the end effector relative to the cup

• The virtual model should be tuned to match the real positioning of objects in the lab,
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(a) The skill model to execute. (b) A moment from the execution.

Figure 10: Example of executing a taught skill.

and the planning should be modified to account for Curi grasping the cup

• Curi’s controller parameters should further be tuned

After encountering multiple issues with executing the saved skill models, a qualitative

examination of all the saved skill models was done to record how many models should be

usable on the physical robot. The results, recorded in more detail in Appendix 1, indicate

that 9/10 kinesthetic skills should be usable, 6/10 GUI skills should be usable, and that

7/10 K-GUI skills should be usable. Since most of the learned skill models are fit for

execution, this approach to learning and using constraint-based skill models should work

with the robot if the problems enumerated above are addressed. However, many of the

executable skill models also have some possibility or producing motion plans that fail, and

so additional work can also be done on learning better constraints or optimizing already

learned constraints.

Future Work

This work is an initial step in researching methods for novice teachers to teach robots robust

constraint-based skill models. Therefore, it can be extended in multiple ways. The primary

ways this work should be extended in the future are:

• More robust end-to-end implementation

The primary focus when completing this thesis was to implement the software needed

to perform the user study and collect the quantitative and qualitative results from
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that. Though this resulted in the study’s completion, several aspects of the imple-

mentation should be revisited if this approach to learning is explored further. The

most important aspect is using perception while teachers provide demonstrations.

This can allow for recording object locations more precisely as well as potentially

additional features for learning constraints. Additionally, the implementation should

be extended to use information about grasping changes from demonstrations to solve

for the correct grasp state for each c-keyframe, rather than specifying when prior to

planning as is done now. Beyond the implementation of learning constraints from

demonstrations, the implementation of motion planning needs to be made more ro-

bust. Currently, the grasped cup object is not treated as a collision object, although

it should be considered a tool attached to the end effector. Though this was allowed

for as non-essential for the study, this should be altered to produce consistently valid

plans. Additionally, the implementation is limited due to not planning with reference

frames other than the robot’s body frame. The GUI can easily be modified to allow

for modification of c-keyframes reference frames, and the lab’s prior work on learning

appropriate reference frames is highly relevant to this subject. Lastly, more accurate

simulation based on physics and object manipulation can be explored for improving

user experience with the GUI.

• Using the GUI for Active Learning

It is somewhat straighforward to explore using the GUI as a means to active learning,

by making the model being generated from demonstrations visible during teaching.

Beyond direct visualization of the current state of the model, the lab’s previous work

on verbal and gesture-based active learning can be extended to having ”visual ques-

tions” within the GUI that express uncertainty about whether the constraints should

be more limited or general. One of the main benefits of using a GUI is that all it

allows for efficient communication of information about 3D space, which can provide

the same questions much faster than other modes of communication. It is promising

to explore whether Active Learning would result in better constraints.
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• Skill representation and learning of more robust constraints

One limitation of our approach is that each c-keyframe must have a single orienta-

tion, which is not appropriate for many skills. To allow for variation in orientation as

well as position, each c-keyframe could be extended to have more than one oriented

position constraint. This could be learned by performing an additional clustering

step for the keyframes belonging to each c-keyframe. A more complex and powerful

possibility would be to use a set of semantic constraints such as ”above” or ”next

to” and automatically learn the appropriate set of such constraints from kinesthetic

demonstrations. Users could then both specify and edit the learned models by using

such semantic geometric constraints, rather than the literal geometric boxes as in our

current approach. This would make it much easier to use the GUI by just specifying

constraints such as ”grasp” or ”move above” and modifying several numeric variables

rather than using the 3D camera and interactive markers for full 3D positioning. It

would be significantly more difficult to learn and visualize the appropriate constraints

if such high-level semantic constraints are allowes, but the additional effort and com-

plexity seems to be justified by the current GUI’s low ratings in terms of difficulty

and preference. There are multiple integrated symbolic and motion planning solutions

that can be considered for this research direction [26][27][28].

• Remote teaching, adaptation and synthesis of many skill models

One of the original motivations of this work was the promise of using a GUI in

the context of remote teaching. Using the implemented GUI, either keyframe-based

demonstrations for learning or entire constrained skill models could be provided re-

motely. The Robot Management System provides a framework for remote teaching

which could be integrated with the current approach to explore remote teaching of

constraint-based skills [17]. The promise of being able to collect many demonstrations

or skill models could enable research into learning more robust constraints, synthe-

sizing multiple constraint-based skill models, or using a constrained skill model in

different environments with GUI input
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Conclusion

In this thesis, I have proposed a constraint-based skill representation that can be learned

from multiple kinesthetic keyframe demonstrations. I have also showed how skills with

this representation can be visualized and edited in an interactive GUI. The results of a

user study comparing the speed, difficulty, user preference, and constraint robustness for

different teaching modes were presented. The K-GUI teaching mode was found to be the

most preferred, and though its constraint robustness is quantitatively similar to that of

kinesthetic teaching I discuss use cases in which it allows for improving upon kinesthetic

teaching. This work provides a basis for researching future approaches for learning of more

robust constraints from demonstrations, as well as justification for the need of a GUI in

addition to kinesthetic demonstrations and evidence that the simplest implementation of

such a GUI is not sufficiently intuitive for naive teachers to use by itself.
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Appendix 1: Detailed Skill Model Evaluation

Results evaluation

Participant 1

Kinesthetic Skill - pour - should work

GUI Skill - platter - should work (small constraints)

KGUI Skill - box - should work

Participant 2

Kinesthetic Skill - pour - should work (small constraints)

GUI Skill - pour - should work (small constraints)

KGUI Skill - box - should work

Participant 3

Kinesthetic Skill - box - should work (some plans likely fail)

GUI Skill - platter - likey will not work (second keyframe too low)

KGUI Skill - pour - should work (some plans may fail - grasping keyframe too large)

Participant 4

Kinesthetic Skill - box - should work

GUI Skill - pour - will not work (set to grab cup from above)

KGUI Skill - platter - should work (some may fail - platter keyframe large)

Participant 5

Kinesthetic Skill - pour - will not work (tilt towards bowl not recorded)

GUI Skill - box - should work (small constraints)

KGUI Skill - platter - likey will not work (keyframes too high)

Participant 6
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Kinesthetic Skill - platter - should work (but many plans will fail,

large grasping constraint)

GUI Skill - box - may work (depends on box positioning)

KGUI Skill - pour - will not work (tilt motion not recorded)

Participant 7

Kinesthetic Skill - pour - should work (small constraints)

GUI Skill - platter - should work (cup needs to be correctly placed,

some plans may end off platter, nice constraints)

KGUI Skill - box - should work

Participant 8

Kinesthetic Skill - box - should work (small constraints)

GUI Skill - platter - should work (if keyframe high enough -

cup needs to be constraint object)

KGUI Skill - pour - should work (nice constraints)

Participant 9

Kinesthetic Skill - platter - should work (small constraints)

GUI Skill - pour - should work

KGUI Skill - box - should work (small constraints)

Participant 10

Kinesthetic Skill - box - should work (nice constraints)

GUI Skill - pour - wont work (did not tilt all the way)

KGUI Skill - platter - will not work (all keyframes strangely offset - error?)
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