
Learning not to fail
Improving task execution with experience

Andrey Kurenkov

Personal Robotics Lab
19 July 2013

Motivation

Robots able to help with everyday tasks

HERB

Problems

 Describing tasks Handling error

Hypothesis

Need to reason about actions given goals
and learn from past experience

MemoryGoals ExecutePlan

Related work

 STRIPS and successors

 Continuous + symbolic reasoning

 Learning to modify planning

Shakey

Technical Approach

Symbolic
Planning
interleaved with
execution

Representation
of world state

Openrave

 PDDL
 +
Fast Downward

Action,
predicate,
and goal
representation

Python

Storage of
logs/world
state

MongoDB
Messages(ROS)

ML (Orange)

PDDL

Standard description language for AI task planning

PDDL demo programming:
action and predicate library +
one or more goals =
herb does stuff (with some notion of what is happening)

PDDL Pseudocode
while not state.is_goal():
 plan = generate_plan(problem,state)
 action = plan[0]
 if not preconditions_true(action,state):
 remove_false_preconditions(action,state)
 continue
 state = state + action.execute()
 if not postconditions_true(action,state):
 log failure
 else
 log success

PDDL Librarian demo

Initial state:
aware_of_object(bookcase) & obj_at(Herb2,bookcase_place) & obj_in
(dracula,bookcase) & is_loc(test_loc3) & is_loc(bookcase_place) &
aware_of_object(dracula) & is_clear(bookcase) & aware_of_object
(Herb2) & herb_loc_known() & is_facing(dracula) & is_small(dracula)
& is_facing(Herb2) & aware_of_object(table) & is_clear(dracula) &
herb_clear() & is_clear(Herb2) & is_loc(test_loc2) & is_loc(handoff) &
is_clear(table) & herb_at(bookcase_place)

Plan: grasp_from_bookshelf('dracula'),
goto_place_obj_at('dracula','handoff')
hand_obj_at('dracula','handoff')
teleport_book('dracula','table')
edge_grasp('dracula','table')
goto('bookcase_place')
place_in_bookcase('dracula')

Goals:
obj_handed_at('dracula','handoff'),
obj_on('dracula','desk'),
obj_in('dracula','bookcase')

PDDL Librarian demo

http://www.youtube.com/watch?v=iq4DzPFGHpM

MongoDB

Generic storage of ROS topics into a database

Storage of full world model:

● robot joint states
● object locations
● PDDL state

Database uses

Simulated replay of executions

Evaluation of new predicates
over past executions

Modifying task planning

Detection and handling of reasons for action failure
● ie grasp_from_bookshelf fails if robot angle>1.2 at start of action

Considerations

1. Need to reveal cause of error

2. Many ways to build feature vector

3. Learning within a range of continuous time

4. Incorporating learning into execution

Causes of error

Assumption: many errors can be avoided by
learning constraints on single physical variables

Classification tree
simple constraints
built-in feature selection

RobotAngle > 1.5
TF

Fail

BookY>3
TF

Fail

Succeed

Feature Vector

1D physical variables (x,y,z,theta) of pertinent
world objects: robot, end effectors, objects

Temporal learning

Train error classifier for every 'sub-action'
within each PDDL action

● execution order consistent

grasp_from_bookshelf: PlanToNamedConfiguration

RotateSegway

right_arm.PlanToConfiguration

object_detect DriveStraightUntilForce

Future Work

Filling out the database

Creating of valid simulation action to learn on

Considering other ML approaches

Incorporating learning back into execution

