MapReduce Simulator

Andrey Kurenkov Troy O'Neal Matthew O'Shaughnessy Mentor: Xiao Yu Advisor: Dr. Bo Hong

Introduction

- MapReduce provides paradigm to easily process data in parallel
- Parallel processing example: word count
- How it works: Map & Reduce tasks
 - Map tasks transform data to key/value pairs
 - Reduce tasks sort and combine pairs
- Apache Hadoop MapReduce implementation used as model
- Problem: unable to estimate operation expense effectively
- Solution: a simulator

Problem Statement

- Design and implement an extensible MapReduce simulation framework
 - Improve abstraction of MapReduce job specification
 - Determine granularity needed for sufficient accuracy

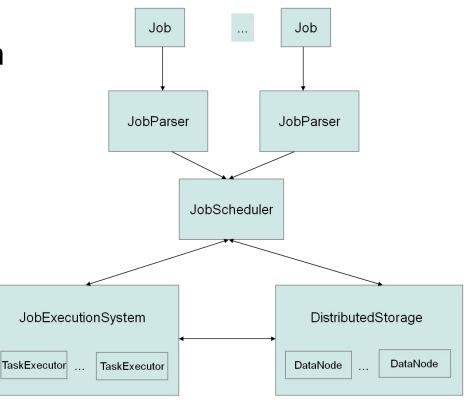
Significance

- Assists Hadoop cluster administrators
 - Cluster configuration
 - Scheduling policy
- Helps programmers write efficient Map and Reduce functions
- Improve Hadoop itself
 - Custom scheduling policies
 - Failure handling
 - Data placement
- Eases research in related areas
 - Use of GPUs in MapReduce context

Goals

- More powerful
 - Does not rely on external trace
- More extensible
 - No hardcoded functionality
- More configurable
 - More general job description
- Maintaining accuracy
 - Comparable to existing works

Challenges


- Breadth of MapReduce uses requires careful framework design
- Balance between accuracy and performance
 - Disk I/O
 - OS scheduling and multithreading
 - Network performance
- Choice of heuristic representations
 - Mathematical model necessary
- Evaluation necessitates actual MapReduce cluster

Methods and tasks

- Methods involve typical OOP concepts
 - Make use of Reflection and Java 7.0 API
 - Allow extension of classes to ensure flexibility
 - Thorough documentation
- Tasks broken down into three stages
 - Develop a robust simulation framework
 - Implement base modules to enable simulation
 - Continually revise and test for stability and accuracy

Current work

- Selection of simulation engine
- Maximum flexibility through a custom-built simulation engine
- Entities in engine correspond to MapReduce components
 - Task executors
 - Schedulers
 - Job descriptors
 - Storage system

MapReduce Operation

- Input file distributed into splits
- Master node assigns Map and Reduce tasks to worker nodes
- Map parses input split and produces intermediate key/value pairs
- Reduce sorts and then combines intermediate key/value pairs

Related Works

- SimMR: Univ. of Illinois Urbana-Champaign; HP Labs
 - Narrowly focused on scheduler selection and Map/Reduce slot allocation
- Rumen/Mumak: Hadoop
 - Powered by a previous job trace
 - Narrowly focused on scheduler selection
- MRSim: Brunel University
 - Many hardcoded properties (limited extensibility)
- MRPerf: Virginia Tech; IBM
 - Flexibility limited to certain configurable items