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Implementation - Compulsory

Main.py is reproduced within the ipython notebook (project.ipynb) which is zipped in
project_source_RST.zip and allows for running the compulsory code. See the readme included
for instructions about executing the rest of the source code. Ablation tests were run on the full
feature set (including parts from the independent part of the project) and the results for features
marked with * reflect ablated features. Results are summarized below from all attempts to
improve RST parsing through additional features:

F1 Nuclearity F1 Span F1 Relation
Out-of-box 327 573 .205
+Compulsory .626 797 488
+Same Sentence* .66 .831 529
+NER* .662 .836 534

*These trials were performed using a classifier trained on the full feature set, whereas the
previous two were performed using a classifier trained on the limited feature sets.

The compulsory part was implemented by adding fields to the SpanNode object, adding code to
initialize these fields (last POS, first POS, headset, entities, etc.) correctly, and adding code to
handle merging these fields across nodes. Most changes were made to the files buildtree.py
and parser.py. Most other changes were superficial and served to aid in passing around files or
suppressing spurious print output. Stanford’s POS tagger, downloaded from
(http://nlp.stanford.edu/software/stanford-postagger-full-2014-08-27.zip), and dependency
parser, downloaded from http://nlp.stanford.edu/software/stanford-parser-full-2014-08-27 .zip,
were used to get POS tags and dependency parses. These tools are integrated fileParser.py
and the code to process the output is there as well. POS tagging was done exactly by obtaining
the POS tags for the first and last token in every EDU. This is easily merged by taking the first
POS of the left node and the last POS of the right node. Obtaining the headset was done
exactly by first identifying the number of tokens in each span. Then mapping each token to its
index in the document. Finally, each word’s parent word is labelled by token index. If the parent
word’s index is outside of the token range of the span in which the word is present, then the
word is a headword. This leads to the natural merging operation of expanding the token range,
and reevaluating whether a token’s parent word is included within that range or not. All other
features were simple to extract from data already present.
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Independent: Improving RST

Entity recognition and coreference also seem useful for making local decisions. If two
adjacent spans mention the same entity, it’s likely that we should merge them. Furthermore, the
appearance of different entities in nearby spans might indicate a change in topic or otherwise
serve to semantically separate these spans. However, it seems that while applying features
based on entity recognition and coreference might help to make better local decisions, it does
not seem likely that it would help make good long-range decisions simply because the most
common entity is likely to dominate and merging too greedily might lead to incorrect parsings.

To get these features, we first run the text through a NER system, from
http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip, to extract entities and a
coreference resolver to identify subsequent appearances of an entity. Then, features are made
corresponding to the set of entities appearing within a span, whether the same entity appears in
nearby spans, and whether different entities appear in nearby spans.

Although the proposal was to find and integrate a coreference system, it’s clear that just
using features regardless of the source is not a good idea. In particular, as we saw in class, the
integration of RST features into other parsing systems seemed to decrease performance
because RST parsing was not good enough to be used effectively. We could not find a
coreference system that seemed to perform well enough to be effective.

We did, however, incorporate NER features into the data. In particular, we included
features for the types of entities mentioned within one span as well as the number of entities
that appeared in a span. The last feature actually decreased performance. We suspect this was
because as more and more merging happened, eventually one span had many mentions while
the other had few and this feature didn’t really provide much information about the spans other
than that one was longer than the other. However, with the types of named entities, we do see
minor increases in performance.

As a fallback,we also implemented a feature for whether two spans were in the same
sentence or not (or for merged spans, whether two spans had any sentence overlap).
Somewhat surprisingly, this feature provided a large performance benefit. This is surprising
because it seems like this information should already be present in some of the other features.
In particular, the last word and first word / last POS and first POS of adjacent spans
(queuespani/stackspan1 and stackspani/stackspan2). For example, if a sentence ending
punctuation does not appear at the end of a span, then those two spans should be in the same
sentence. The results from this section are included in the table presented above and thus have
not been reproduced below.
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Independent: Beam Search

Action selection by the provided parser operated in a very greedy fashion, solely reliant
on the state of the stack and queue. In an attempt to improve parse selection, we implemented
a beam search. Though we initially suggested to compare this to A*. It was expected and later
confirmed by another group that full A* is too expensive on this data given its branching factor,
and the heuristics needed to power it well required the implementation of the outside viterbi
algorithm (see Klein and Manning ). Therefore, we decided to focus on testing beam search and
extensions of it. During testing it was discovered that using headword features caused the
evaluation to be too expensive, leading them to be excised. Beam search was evaluated using
the following heuristics:

LatestWeight: Actions on the beam were ranked solely by their prediction scores. In the case
where the beam width is 1, this is identical to the original best-first search.

DecayingWeight: All prediction scores for each parser state were maintained, and these were
summed, exponentially decaying from the latest result. The idea behind this heuristic is that one
mediocre action choice should not completely discount a long string of very good ones. Different
rates of decay were used, but none of these variations were found to improve the performance
significantly. The best results are shown in the table below.

The idea with the following two heuristics was to incorporate information not used by the
classifier. With the above two heuristics we were simply reusing the scores output by the
classifier, which seems slightly redundant since that’s what the vanilla shift-reduce parser used.
Then since the shift-reduce parser never looked at tree features, we tried some heuristics that
captured information regarding the structure of the parse tree in addition to using the scores
output by the classifier.

TreeBalance: In an attempt to account for the global structure of the resulting parse tree, an
expected tree balance was computed for each tree size, based off of labeled trees in the
training set. Successive penalties were applied to actions that moved the structure of the tree
several deviations away from the expected values.

RelationProportion: Since prediction scores did not reflect the relational structure of the entire
tree, this heuristic was an attempt to account for the global structure of the tree. The expected
relational proportion was computed off of labeled RST trees in the training set, and successive
penalties were applied to the weights if proportions were found to be several deviations away
from the expected values.

Results are summarized in the table below. The baseline is the full feature set minus the
headword features and otherwise the rows are in pairs of (heuristic, beam width). The defaullt
values were DecayingWeight:0.3, TreeBalance:0.05, and RelationProportion:0.005.
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Heuristic F1 Nuclearity F1 Span F1 Relation
-headwords .655 .835 523
LatestWeight, 1 .655 .835 523
LatestWeight, 5 .639 827 496
LatestWeight, 10 .630 .824 487
DecayingWeight, 1 .655 .835 523
DecayingWeight, 5 .649 .830 511
DecayingWeight, 10 .647 .829 .509
TreeBalance, 1 .655 .835 523
TreeBalance, 5 .646 .832 .500
TreeBalance, 10 .639 .830 491
RelationProportion, 1 .655 .835 523
RelationProportion, 5 .625 .822 A77
RelationProportion, 10 | .641 .832 493

As expected for LatestWeight and DecayingWeight, with beam width 1, we simply reproduced
the output from the baseline classifier. This is because the algorithm is just taking the best
option at each point, which is equivalent to the original shift-reduce parser. Unexpectedly,
perhaps, the tree features also showed the same behavior with a beam width of one. This
suggests that looking at the trees doesn’t really provide much more information about the
correct action to take than just looking at the features already present. This is possibly a side
effect of the large amount of structural features already incorporated into the baseline classifier:
perhaps there is already enough information about the tree even present in the top two
elements on the stack and first element on the queue. Unfortunately, increasing the beam width
actually decreased the performance.

Unfortunately, increasing the beam width seemed only to decrease the performance (except
from width 5 to 10 for RelationProportion). This could happen since we increase the number of
actions to consider at each point. With more actions, we may explore trees which had one
relatively bad local decision followed by a lot of attractive options that overrode the baseline. In
theory, with infinite beam width, we should always do at least as well as the baseline. However,
given the massive branching factor possible for the RST tree, this is not feasible in practice.
Another possible fix would be allowing for backtracking, but this is slightly moot since we really



have no intuitive grasp of when to backtrack (what does a bad RST tree look like?).
Independent: Application

Lastly, we also explored using RST features to assist with assessing the helpfulness of
movie reviews. The SNAP dataset contains 8 million Amazon movie reviews, with metadata that
includes the helpfulness ratings users of the site gave to different reviews. We initially planned
to use RST features for sentiment analysis with this dataset, but that has already been
significantly researched and in particular multiple successful techniques for using RSTs for
improving sentiment analysis has been published. Unlike sentiment analysis, very little work has
been done on the subject of helpfulness and it seemed likely that the bag of words
representation would not work as well for it since ngrams do not map directly to any helpfulness
metric. Furthermore, we thought that RSTs were a good fit for this problem because they offer a
way to measure coherence in a text and high coherence would likely make a review helpful and
vice versa. Our plan for using RSTs for features was to initially extract as many simple features
(such as counts of relations, depth, number of EDUs) as possible from the RST, as it was
expected this would reveal the complexity and depth of a review in a way ngrams could not.

A significant amount of time was spent getting initial results with no RST features to later
compare against. The outcome of this work can be found in
helpfulness/reviewHelpfulnessClassification.py and reviewDatasetParsing.py. The former
contains all code pertinent to learning and evaluation classifiers based on different features, and
the later provides various generator-based parsing functions that enable handling so much data.
Note that the SNAP dataset needs to be in the same directory as the code to run, but due to
being 8.6GB is not included in the submission. To simplify the problem, only reviews with at
least 6 helpfulness ratings were used and binned into ‘good’, 'okay’, and ‘bad’ reviews based on
the ratio of good to overall ratings.
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Flgure 1. Distribution of classes in the dataset; roughly %45 percent is one class.

As seen in Figure 2, leveraging the large amounts of data allowed for good performance using
nothing but the tfidf statistics for a set of ngrams based on a subset of the data. After evaluating
how well the task could be accomplished using only tfidf ngram features, the RST parser was
sufficiently worked on to use for feature extraction on the movie dataset. In order to do that, we
first integrated the SLSeqg discourse segmenter package to extract EDUs from the movie review
texts. It is a rule based segmenter that just stores many common phrases or words to segment
by. The output of the package required a large amount of post-processing and handling of edge
cases in order to work with the existing pipeline for parsing lists of EDUs, which needed to be
done before learning over the RST trees of movies reviews could be done.

After that was done, a major impediment we did not expect was that the feature extraction
necessary for the RST parser was very time consuming, and also only 11197 reviews could be
initially be parsed. Of those, 4736 had at least 3 ratings, and so 3947 instances were used
used for training and the rest for test set. Feature were extracted from the text representation of
the RST, and included the number of EDUs, number of nuclei and satellites, count of each
relation type, and total tree size.
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Figure 2. Results for using length 1-3 ngram tfidf features, based on the vocabulary of 50k
reviews, evaluated on a set of 50k different reviews using a PassiveAggressiveClassifier
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Random Value Text Length Baseline Label Distribution Sampling
Features Baseline Baseline

Passive 0.2188 0.2188 0.3465

Aggressive

Multinomial | 0.4508 0.4508 0.3769

NB

Table 3. Baseline results for two different classifiers. Notably, Passive Agressive seems to
overfit on bad features whereas MultinomialNB ignores them and get majority performance.

ngrams Full RST feature Limited RST Limited RST +
set feature set ngrams
Passive 0.4913 0.3110 0.4366 0.4853
Aggressive
MultinomialNB | 0.4245 0.4539 0.4539 0.4518

Table 4. Results with different features. As with other bad features, the full set of RST features
made the Passive Aggressive classifier perform worse but did not impact MultinomialNB

The results for tests with this set of data are summarized in Table 4 and Table 5. Using the full
set of RST relations as features actually made the Passive Aggressive learner perform worse,
which was also the case with other bad features - it appears that the passive aggressive
algorithm can overfit on the training set with bad features, whereas MultinomialNB does not. It
was decided that inspecting the features of the movie review RSTs to find the best features was
a worthwhile task. Several functions, for producing plots of data and correlation coefficients
between features and helpfulness, were implemented in reviewDatasetInspection.py. Appendix
1 has full correlation results based on scipy.stats.pearsonr. Limiting the RST feature set to
several top ranking features increased performance significantly, though some of the highest
ranked features still led to bad results. It may be that none of the features has strong enough
correlation to be used well for classification, as they simply overfit to subsets of the data.
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Figure 3. Despite intuitively seeming like a good feature, length does not correlate very strongly
with helpfulness. This is one of the results from reviewDatasetInspection.py

The best results that were gotten for the limited RST feature set were through using the ste
['‘conclusion','proportion’,'result’,'antithesis’,'circumstance’,'otherwise’]. Though it is unexpected
that even using RST features that correlate with the label results in a performance decrease, the
code for this is thoroughly checked. We therefore had to conclude that the fault is still with the
features not being strong enough, so that the PassiveAggressive classifier simply overfit as it
does with random features. To overcome this lack of performance gains, we had two solutions:
to simply perform more parsing and get more RST data, and to attempt to find better features by
implemented further feature extraction over the RST tree (contained in the added
TreeStatistics.py file) and find their correlation with the label. The additional feature
implemented were tree depth, tree balance, and the addition of parent relations in addition to
just relation counts. The best correlated features from this large set of features can be seen in
Appendix 2.

Due to several technical problems, the second set of parsed movies reviews we generated only
had 3975 reviews with 3 or more helpfulness responses which were similarly split into a train
and test set. Results for tests with this second set of data are in Table 5 and 6. Though the
correlation check found multiple seemingly good features, there was not a significant gain from
RSTs as before. A notable difference is that the Passive Aggressive classifier ignores bad
baseline features just like MultinomialNB, which is unexpected given the previous results. Since
the code is virtually the same for getting these two results, there is no clear explanation for why
this happened. Otherwise, the conclusions are the same - despite having some RST features
that displayed correlation to the label, the correlation was too weak to lead to the RST features



being particularly good features. It seems that with such a small amount of training data, a more
complicated feature such as the RST-based coherence measuring described in Dias et. al
would be beneficial. However, implementing the algorithm to do such coherence measuring was
beyond the scope of what we could do for this project. Since the RST features do clearly help
with training, it is reasonable to expect that given more data the classifiers could better use
them and avoid overfitting just as was the case with ngrams.

Random Value
Features Baseline

Text Length Baseline

Label Distribution Sampling
Baseline

Passive 0.3861 0.3861 0.3496
Aggressive

Multinomial | 0.3861 0.3861 0.3534
NB

Table 5. Baseline results for two different classifiers. Notably, Passive Agressive seems to
overfit on bad features whereas MultinomialNB ignores them and get majority performance.

ngrams Full RST feature | Limited RST Limited RST +
set feature set ngrams
Passive 0.4528 0.3899 0.3874 0.3861
Aggressive
MultinomialNB | 0.3874 0.3496 0.3823 0.3849

Table 6. Results with different features. As with other bad features, the full set of RST features
made the Passive Aggressive classifier perform worse but did not impact MultinomialNB

Appendix 1

Correlation values for initial feature set.

Feature

Correlation

(mostly counts)

comment
interpretation
sequence
lines

antithesis

-0.010415

0.017728

0.012274

-0.026215

0.01485

Probability of uncorrelated data getting

this correlation

0.464519

0.213108

0.388721

0.065587

0.297005
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enablement
evidence
topic
manner
Satellite
disjunction
span
purpose
means
question
same

list
Nucleus
statement
rhetorical
cause
contrast
conclusion
elaboration
attribution
analogy
circumstance
explanation
problem

reason

0.002268

-0.013395

-0.021402

-0.015498

-0.022583

-0.017398

-0.022583

-0.001438

-0.008323

0.000982

-0.011718

-0.018937

-0.027186

-0.009789

0.004012

0.006006

-0.003636

-0.024532

-0.020545

-0.001766

0.003377

-0.030865

-0.0264

-0.002605

-0.008233

0.873431

0.34686

0.13281

0.276419

0.112718

0.221758

0.112718

0.919541

0.558892

0.944993

0.410536

0.183532

0.056205

0.491824

0.778137

0.673179

0.798465

0.084883

0.149051

0.901316

0.812516

0.030161

0.063699

0.854837

0.563142

Did not help



maxDif
background
inverted
contingency
condition
comparison
temporal

textualorganizati
on

evaluation
maxEDU
preference
summary
definition
hypothetical
restatement
proportion
consequence
concession
otherwise
example

result

Appendix 2

-0.026518

0.01577

-0.007546

-0.013303

-0.002398

-0.001956

-0.011795

-0.029492

-0.004656

-0.026377

-0.00333

-0.025913

-0.016233

0.020931

0.009874

-0.021713

0.002546

-0.002645

0.02683

-0.01633

-0.016389

0.06253

0.268076

0.596151

0.350167

0.86627

0.890773

0.407489

0.038312

0.743697

0.063931

0.815126

0.06875

0.254271

0.141552

0.488036

0.12727

0.858095

0.85262

0.059504

0.251451

0.24973

Correlation values for best results in second feature set.

Feature

Correlation

Did not help

Probability of



(‘'statement’
(‘comment’
list

(‘cause'
('result’
(‘contrast’
('list'
(‘concession'
(‘contrast’
('summary"
(‘condition’

(‘comparison'

(‘textualorganization

circumstance

('manner’

(‘consequence’

size
statement
elaboration
explanation
(‘condition’

(‘elaboration

('purpose’

‘condition’)
‘concession')
-0.033689
'‘cause')
‘explanation’)
‘contrast’)
‘explanation’)
'‘purpose’)
‘comment’)

'means')

'circumstance')

‘antithesis')
‘antithesis")
-0.04482
'means')
‘antithesis')
-0.038667
0.039046
-0.038872

-0.032465

'textualorganization’

)
'span')

'preference')

0.062272

0.047295

0.033609

0.0489

0.067721

0.037712

-0.032778

0.035219

0.045266

0.067721

0.036579

0.03304

0.035981

0.004693

0.049295

0.062272

0.014731

0.013784

0.014211

0.04061

0.031768

-0.038708

0.054362

uncorrelated data
getting correlation

0.000085

0.002848

0.002035
0.000019
0.017377
0.038711
0.026332
0.004296
0.000019
0.021046
0.037178

0.023243

0.001871

0.000085

0.045119

0.014627

0.000603



('means’
(‘'statement’
(‘contrast'
(‘consequence’
(‘elaboration’
(‘'explanation’
('question’
(‘antithesis'
same
('purpose’
(‘'statement’
('span’
('span’
sequence

(‘elaboration'

('reason’

(‘comment’
('reason’
(‘antithesis'
span
('span’

('summary’

‘contrast’)
'span’)
'same’)
'‘purpose’)
'statement’)
result’)
‘contrast’)
'reason’)
-0.031263
'disjunction’)
‘elaboration’)
'same’)
'span’)
-0.033437

‘elaboration’)

'textualorganization’

)

'means')
‘contrast’)
'‘cause')
-0.039593
‘circumstance')

'restatement’)

0.0354

0.04607

0.035347

0.052162

0.068413

0.039306

0.0709

0.039419

0.04865

0.043509

0.046451

-0.035319

-0.036758

0.034958

-0.038227

0.036318

0.078953

0.037471

0.062296

0.012512

-0.040722

0.05201

0.025566

0.003657

0.025789

0.000998

0.000016

0.013165

0.000008

0.012905

0.006059

0.003386

0.025905

0.020426

0.015902

0.021983

0.000001

0.018107

0.000084

0.010209

0.001032



