
Andrey Kurenkov
Project #1
CS 4641

Supervised Learning Report

Datasets
Australian Sign Language Signs: This is a set of numeric data collected from different people
performing a total of 95 different signs several times. The classification problem is to be able to
classify the sign being performed by a person given measurements of the state of their hands. The data
was recorded using a Fifth Dimension Technologies gloves on both hands as well as magnetic position
trackers attached to each hand. Thus, each instance in the dataset has the classification of what sign it is
as well as a set of frames from the recording containing the 3D location and 3D rotation of both hands
as well as a 1D measurement of the degree to which each finger is bent on each hand. There are 27
instances for each sign, with 3 instances gathered from 9 different people, for a total of 2565 instances.

Despite the clear structure of the data, the data are provided only as a sequence of frames for each sign
recording and not a consistent set of features. To formulate the dataset as a classification problem, each
measured value from each numbered frame was treated as a feature. Additionally, the number of frames
is not the same for all the instances in the dataset, with the average number of frames being 57. To have
a consistent number of features, all instance were converted to have 80 frames by ignoring any extra
frames for instances with more than 80 frames or by adding additional features all having a value of -1
for instance with fewer than 80 frames. Since there are 22 different values in each frame and 80 frames
for each instance, there are 760 feature attributes in the classification problem that are all numeric.

Email Folders: This dataset was constructed for this project using data exported from my own Gmail
account. The exported data was in the mbox format and contained all information about the emails
received and sent by me in Gmail. The classification problem created using this data was the task of
classifying which Gmail folder an email should be placed in given features about the email extracted
from its mbox information. There are 11 folders with varying numbers of emails in my Gmail account,
so given the the mbox data there could only be 11 classes but many possible sets of features.

Folder Number of Emails

Academic 76

Personal-Programming 120

Professional-TA 727

Professional-Research 354

Professional-RISS 177

Trash 539

Professional 135

Group work-SolarJackets 748

Group work-IEEE 44

Financial 63

Personal 243

Table 1. Number of emails in each folder of my Gmail dataset

One set of features was settled on early and the experiments were primarily ran with them. These
features include the sender of the email, the domain from which the email was sent, as well as 550
binary features of the form “Does this email contain the word X.” The 550 words were selected to be
the 50 most frequently occurring words in each folder that also occur at least 25% of times in emails
within that folder. Some experimentation with these numbers was performed, so the number of words
and percent threshold were chosen to create the best classification rates possible.

Why are these interesting datasets?

The datasets are interesting both because of potential applications of well performing classifiers for
their data as well as the nature of the data and the challenges they pose to machine learning. The signs
dataset allows for training a classifier of sign language gestures, which has an obvious use: translating
speech in sign language to a verbal language or written speech. Though classification based on video
may be more applicable in more situations, showing that a classifier can work well with these sensors
proves that the problem is fit for machine learning.

As with the emails dataset, the number of features greatly exceeds the number of classes which may
result in overfitting due to it being easier to get a more specific hypothesis. It is also notable for
representing data that has a temporal aspect, or alternatively a specific sequence to the data, which is
more often seen with Hidden Markov Models than supervised learning. Lastly, it is interesting to see
that adding default meaningless values to instances where those values don't have any actual recorded
value did not hinder learning successful classifiers. My intuition is that these extra feature values could
still be valuable for learning by representing more information about the length of a given gesture.

The emails dataset was created with the specific intention of determining whether writing an
application to automatically suggest a folder to put an email into is a viable idea. Using my own emails
in this project creates a realistic dataset for such an application and allows me to test these algorithms
on data not specifically gathered for the purpose of machine learning. It is also interesting for the
similarity of this task to the notable machine learning application of spam filtering, although the
multiple classes of email and lack of obvious spam-like features make this task significantly more
challenging.

There are also several elements that make this dataset interesting from a machine learning perspective.
The question of what features should be included and overall design of the classification problem are
interesting problems in their own right. Deciding on initial features through intuition and performing
quick experiments to refine how many and which features are included gave me some experience with
how a large collection of data can be converted into a set of instances for machine learning. A notable
result was that including features that intuitively seem like they should be strong classifiers, such as
words that occur almost exclusively in one folder, may result in worse overall learning since the data is
not as representative of the dataset as a whole. Beyond the classification problem itself, this dataset is
interesting because it represents learning about text data unlike the signs dataset, it has classes with
widely varying numbers of instances unlike my second dataset, and it has a very large number of
feature relative to the classes. These interesting aspects suggested that it should reveal some traits of
supervised learning algorithms other datasets would not, and in particular that my second dataset wont.
A notable aspect of this dataset is also that all the algorithms perform at least somewhat well and none
completely succeed, which means the dataset has features that are fit for all the algorithms but are not
sufficient for fully accurate classification.

Learning Curves

Figure 1. Learning curves for both datasets
Before addressing the behavior of each algorithm separately, it is useful to examine the performance of
all the algorithms given varying numbers of instances for training and constant test sets. All algorithms
were ran with the best parameters found in other experiments, though unlike the other experiments they
were tested with a constant test set rather than cross validation and so performed worse overall.

As seen above, the signs dataset has a better maximum success rate but has a larger variance of
performance, with kNN performing significantly worse than the other algorithms. That kNN performs
so poorly indicates that it is not enough to merely find examples with similar feature values for the
signs dataset, but that some more detailed measure of how much the motions are similar is required.
Conversely, for the emails dataset this is not a problem and just finding examples with similar feature
values performs relatively well. This makes some intuitive sense, since to classify the continuous
motion data of the signs dataset the classifier needs to consider the change between frames but

129
257

385
514

642
770

898
1027

1155
1283

1411
1540

1668
1796

1924
2053

2181
2309

2365

0

0.2

0.4

0.6

0.8

1

1.2

Percent Correct vs. Instances for Training

Signs Dataset Tree Train

NN Train

KNN Train

SVM Train

Boosting Train

Tree Test

NN Test

KNN Test

SVM Test

Boosting Test

Number of Instances

152
304

456
608

760
912

1065
1217

1369
1521

1673
1825

1977
2130

2282
2434

2586
2738

2843

0

0.2

0.4

0.6

0.8

1

1.2

Percent Correct vs. Instances for Training

Email Dataset
Tree Train

 NN Train

KNN Train

SVM Train

Boosting Train

Tree Test

NN Test

KNN Test

SVM Test

Boosting Test

Instances for training

disregard any offsets for the whole motion, unlike the emails dataset where there is no meaningful
relationship to be extracted between features.

Another interesting thing to note is that both datasets rarely have a problem with overfitting, and as will
be shown later this is not due to pruning and remains the same for independent variables different form
number of instances. This makes sense for both datasets, but for different reasons. For the emails
dataset, it is clear that it actually underfits the data in most cases as it usually does not achieve flawless
classification for the training data. Therefore, even given unlimited learning it does not overfit but
rather only gets better. A different formulation of the classification problem that avoids underfitting is
necessary to get better performance and possibly have overfitting be a problem. The signs dataset does
not at all underfit except with Neural Nets, but since the signs have mostly constant motions that
classification problem is really to account for noise or minor offsets in those motions. Given 27
instances of the motion it is difficult to “learn the error” instead of the core motion, and so overfitting
would require an extreme amount of learning that was only attempted with Neural Nets.

Another aspect that can be seen in the general performance of the algorithms is the difference between
which algorithms perform best and worst on them, with SVM performing significantly better than other
algorithms for the email dataset but being among the lowest performing on the signs dataset. SVM was
run with the Radial Basis Function kernel, which is an infinitely dimensional kernel that learns to
classify using the gaussian distance metric between feature values in instances. My intuition is that this
is a more robust way of doing close to what kNN, and so once again it does not have impressive
performance on the signs dataset but works better for the email dataset.

Decision Trees
Decisions trees was one of the best performing algorithms for the email dataset, and one of the worst
performing for the sign dataset. It is important to note that all data except the learning curves was
obtained with cross validation due to the lack of a provided test set, so the results are slightly different.
One interesting results is that despite two forms of pruning being tested for both datasets, neither form
of pruning improved performance whatsoever. The obvious reason for this is that neither dataset suffers
from overfitting as discussed before, and so pruning was of no benefit.

The trees still undefit for the emails dataset, but they perform quite well among all the algorithms. This

5 10 15 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Decision Tree Success vs. Maximum Depth

Email Dataset

Train Success

Test Success

Maximum Depth

makes sense, since given the features I created for the dataset the main way to classify an email is to
determine who among many possibilities was the sender, from which domain it was sent, and which
words it contains. This is entirely possible with decision trees, and furthermore few other methods
seem possible given these features so other algorithms should perform no better.

Figure 2. The results of two different pruning methods tested with both datasets

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

Decision Tree Success vs. Percent Majority

Signs Dataset

Train success

Test success

Percent of Majority Class in Leaf

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

Decision Tree Success vs. Percent Majority

Email Dataset

Train success

Test success

Percent of Majority Class in Leaf

5 10 15 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Decision Tree Success vs. Maximum Depth

Signs Dataset

Train Success

Test Success

Maximum Depth

Figure 3. Heat maps representing the confusion matrices of the email data(left) and signs data(right).
Higher opacity circles represent higher values, and correct classifications are on the diagonal.

More information about the performance of the algorithms is available by looking at the resulting
confusion matrices represented as heat maps figure 2. The heat map for the email dataset shows that
most erroneous classifications occur with two classes, which are also the classes of most instances in
the dataset. In contrast, the error is relatively spread out with the signs dataset. This unsurprisingly
shows that if a dataset is heavy weights to have many instances having one or two classes instances are
more likely to be classified with those classes with their actual classes mattering less than if the classes
are uniformly spread out in the instances. Training times were below ten seconds for emails and close
to a minute for signs, most likely since both datasets did not have a very large number of instances.

Neural Nets
With cross validation testing, Neural Nets with a single hidden layer was the best performing algorithm
for the signs dataset and close to the worst for the email dataset. This is a noteworthy result, as it fit
with my expectation that neural nets would offer an advantage to the numeric and sequential signs
dataset but not the discrete and unordered email dataset. I believe that because there is no relation to
capture between the features for the emails, the neural net can only attempt to replicate the logic
learned by the decision tree and does so slightly worse. In contrast, since the features of the signs
represent motions and are sequential neural nets perform better with them.

Overfitting was not observed, though interestingly with enough hidden layer nodes the performance
started worsening for both the train and test data. I expect that this is because I did not increase the
training epochs along with the number of hidden layer nodes, and so given the size of the net it was not
trained as well in the same time. The time to train the biggest neural net was 34 minutes for the email
dataset and an hour and nine minutes for the signs dataset, predictably showing the more features
results in longer neural net training. Experiments were also performed with varying the number of
epochs, but beyond an initial improvement in performance for the first three hundred epochs the
performance stayed completely constant afterward, once again showing that there is no overfitting.

Figure 4. Data for Neural Nets, with the same heat maps as figure 2

2 4 5 6 8 10 50 100 500 1000 500010000
0

0.2

0.4

0.6

0.8

1

Neural Net Success vs. Hidden Layer Nodes

Email Dataset

Train success

Test success

Hidden Layer Nodes

2 4 5 6 8 10 50 100 500 1000 5000 10000
0

0.2

0.4

0.6

0.8

1

1.2

Neural Net Success vs. Hidden Layer Nodes

Signs Dataset

Train success

Test success

Number of Hidden Layer Nodes

A final detail to note is that the heatmap of the neural net for emails shows it to completely fail to
classify 2 of the 11 classes. This indicates that the majority of instances having only 2 different classes
affects it more than the decision trees, and is the reason for it performing worse. I did not expect a
skewed class distribution to affect neural nets more than other algorithms, but that is what the results
seem to suggest.

Support Vector Machines
Support vector machines were tested with two kernels, the Radial Basis Function kernel and
Polynomial with a degree of 3. The gamma variable, which roughly acts to set how close the boundary
should fit near the training examples, was altered to see how it behaves for these kernels. Overfitting
was achieved for the signs dataset using a gamma several orders of magnitude larger than optimal, but
otherwise as before the email dataset underfit and SVMs had good performance for signs that is inferior
to neural nets. So, as expected it is possible to overfit for the signs dataset by learning the error but the
data make it hard for that to happen. The other result is that RBF performs better than the polynomial
kernel in both cases, which I expect is because it is a more general distance metric and not constrained
by the shape of a third degree polynomial.

Figure 5. SVM results with different parameters. Heatmaps excluded due to no new information.

0 0 0 0 0 0 0 0.01 0.01 0.05 0.1
0

0.2

0.4

0.6

0.8

1

1.2

SVM Success vs. Gamma

Email Dataset

Train success
(Polynomial Kernel)
Test success
(Polynomial Kernel)
Train success (RBF
Kernel)
Test success (RBF
Kernel)

Gamma

0 0 0 0 0 0 0 0.01 0.01 0.05 0.1
0

0.2

0.4

0.6

0.8

1

1.2

SVM Success vs. Gamma

Signs dataset

Train success (RBF
Kernel)
Test success (RBF
Kernel)
Train success
(Polynomial Kernel)
Test success
(Polynomial Kernel)

Gamma

In terms of evaluating the results, I think they are consistent with the performance of other algorithms.
An SVM can learn to represent the same information as a decision tree in the emails dataset, and so it
achieves comparable but not better performance with values of gamma that roughly make it classify
using all the features which is comparable to the decision tree having a large depth. For the signs
dataset, I expect that the previously discussed advantage of neural nets does not translate with SVMs
because while it can train to recognize the sequential motion it cannot handle offsets of it or other such
variations.

Boosting
An unexpected result was obtained with boosting: altering the number of trained weak classifiers from
4 to 20 had absolutely no effect for both datasets. Furthermore, the success rate of boosting were
almost exactly the same as those of the tree learners it was given, so trees with high pruning led to
badly performing boosting classifiers and boosting with no pruning performed almost exactly the same
as just training a decision tree would have. This result may be particular to the machine learning
package I used, which was a python package called Orange. However, an explanation based on the
nature of the data may be that with the numbers of instances being trained on no patterns of what a
complicated or difficult classification emerges, so there is no benefit to weighing the individual
instances. The result is that the success rates were only very slightly higher for unpruned trees. This is
in agreement to an example result in Orange documentation for boosting learning, which shows that a
boosted tree learner performed only 0.006 better than an unboosted tree learner. It is likely that
boosting would have had more benefit if my datasets were more susceptible to overfitting.

Figure 6. Tree confusion heat map(left) compared to boosting confusion heat map(right). Performance
graphs not provided since they are constant in value and described in the text.

k -Nearest Neighbors
This was the worst performing algorithm for both datasets, though its performance was still only 0.2
worse than the best performing method and a whole 0.6 worse for the signs dataset. This agrees with
my previous thought the the sequential and related nature of the features for signs make algorithms that
don't take that into account perform badly. It is also consistent with email results, since Orange kNNs

Figure 7. Data for kNNs for both datasets

5 15 25 35 45 55 65 75 85 95
0

0.2

0.4

0.6

0.8

1

1.2

KNN Accuracy vs. K

Signs dataset

Train success

Test success

K

5 15 25 35 45 55 65 75 85 95
0

0.2

0.4

0.6

0.8

1

1.2

KNN Success vs. K

Email Dataset

Train error

Test error

k

only measure similarity of all features and are unable to capture the logic of certain features having
precise values or being more important for a given class (the sender and domain features are
significantly more important than the rest in other algorithms).

However, kNN still performs relatively well with emails, as do all the other algorithms. I believe this is
because most of the features of the email dataset have values that do not relate to each other on any
level beyond the statistical correlations of their appearance, and so a classifier could be made using
simple statistical techniques rather than sophisticated machine learning. Although the logic of decision
tree provides some benefit, kNNs performing so well implies that this is in fact the nature of the data
since instances with similar feature values do tend to have the same class. This is as simple a machine
learning result as one can get, so none of the algorithms fail to do at least as well as kNN and do not
manage to do much better. In contrast, the signs dataset has features that are related by the fact that they
are instances of a motion in 3D space, and so features are related to each other by much more than
statistical correlation. More sophisticated machine learning techniques such as Neural Nets can learn
this higher level relation, whereas kNNs do not.

Another interesting aspect of the result for kNNs is that the performance only decreases as k increases,
even if it is small relative to the number of instances. This makes sense for the training set, since with a
lesser k the same instance within the training set has a higher weight and leads to perfect classification,
which is worsened with higher values of k. However, it is harder to explain why the testing sets are
barely affected by the k value. The best explanation I have for this is that there are only a few instances
that are very close to any given instance in the test set, and so they primarily determine the
classification of that test instance and as k increases only instances that are farther are found and affect
the result less.

Conclusion
As mentioned many times throughout the report, the most interesting result I obtained had to do with
the effects of a skewed class distribution, of features that are either not related or strongly related to
each other, and possible reasons why the two datasets I chose do not overfit easily. My ability to train a
fairly well performing classifier for the email dataset also makes me consider applying the idea to a
browser application that suggests how to classify new emails, which is a strong example of the sort of
problem machine learning is good for.

