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Leon Chua s Predicted Memristor

In 1971°s “Memristor: The Missing Circuit Element,” Leon

= Chua made a symmetry argument for there needing to be a

0—| |—0 fourth fundamental circuit element that relates flux to charge.
Fa—. This is the last relationship between voltage, current, charge,
B and flux that has not yet been realized by the resistor, cap,

and inductor. The resistance of such a device depended on
past current through it, so it was dubbed the “memristor.”
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— S In 1976°s "Memrisive Devices and Systems” he defined a
dp=Ldi dp = Mdg broader class of memristive systems special for all having a

J"\ . hysteresis loop that had a zero crossing (f(0)=0).
rw‘

a special case of a much more general class of dynamical
systems--henceforth called memristive systems—defined by'

Figure 1| The four fundamental two-terminal circuit elements: resistor, x=f(x,ut) |
. . - : b
capacitor,inductor and memristor. Resistors and memristors are subsets of ’
amaore general class of dynamical devices, memristive systems. Note that R, y=glx,u,thu J (1)

C, Land M can be functions of the independent variable in their defining

Memristive systems

equations, yielding nonlinear elements. For example, a charge-controlled where u and y denote the input and output of the system and
memristor is defined by a single-valued function M(q). x denotes the :tafe of the system_. Tl_le functiqnf: /"X RX
Symmetry argument, from “The Missing From “Memristive devices and systems”

Memristor Found”



Memristor Concept Revived in 2008

A 2008 letter titled “The Missing Memristor Found” from HP labs suggested a
range of nano devices were actually modeled by the memristor concept.
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Flurry of Research Since 2008

As of recently, 2215 citations of “The Missing Memristor Found.” Notable applications include:

e ReRam (resistive RAM) Memory to replace Flash (near commercialization)
e Logic/Computation within memory

e Reconfigurable Circuits (improved FPGAs, PLAs, etc)

e Neuromorphic circuits

Much research on best way to model memristors, ranging from the simple original HP model to much
more complex models. Wide range of physical realizations and behaviors.

40 10K For pedagogical reasons, any 2-terminal black box (fig

as ure l(a)) with two electrical terminals is called a memristor
g 30 oK if it obeys the following state-dependent Ohm’s law.
;g 2 ™ Current-controlled state-dependent Ohm's Law:
g 20 ‘
il : 10M v=R(X)i (la)

Coodx
100M State equations: T =f(x, 1) (16)
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Bottom electrode if the current i is the input, or
2012, “A Functional Hybrid Memristor Crossbar-Array/CMOS Latest definition by Leon Chua, “Memristor,

System for Data Storage and Neuromorphic Applications” Hodgkin—Huxley, and Edge of Chaos"



Memristor for ReRam - i

Essentially use resistance rather than charge . —_
for storage in memory. Crossbar allows for R e e ¥ B

very dense and power efficient storage, I 2 |

though read times only make it competitive st g b

with FLASH. | 0
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2012, “A Functional Hybrid Memristor Crossbar-
Array/CMOS
System for Data Storage and Neuromorphic Applications”



Memristor for ReRam (cont.)

A much studied problem for crossbars is “sneak
path” currents. Solutions include additional
components, two opposite polarity memristor as
“Complementary Resistive Switches “ and using devices that
are insulating at negative bias. Non binary memory
storage has been demonstrated using the last
approach.

Figure 1| Crossbar array and sneak path issue. Sneak path problem in 2
memristive crossbar architecture. Only the addressed element in the centre

2010, “Complementary Resistive Switches for passive
nanocrossbar memories”
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Logic Within Memory

Research into logic in nano crossbars as early as 2005, led by HP's Gregory S.
Snider. Limited by need for closed junctions and device variability.
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Logic Within Memory (cont.)
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VerilogA/Schematic Work With Logic
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Simulation with Cadence was done to verify and evaluate different schemes for performing logic.
Operation of logic is verified, though working logic is not nearly enough for general computation and
scaling up from the basic boolean gates is hugely non-trivial.



Universal Memcomputing Machines

Turing Machines are a theoretic ednl i lCols il

model of the Von Neuman S —— e
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problems in O(n) time.

Theoretical solution to subset sum in O(n), 2013,
“Universal Memcomputing Machines®



Memprocessor for Memcomputing

Completely different model from Von
Neuman, but not actually radical.

Doing computation with storage elements
does not inherently change computing, if the
computation is still localized and digital.

A control unit with many memprocessors is
very similar to distributed computing/systolic arrays. T hiS IS
MIMD (multiple instruction, multiple data)
parallelism, and it is clear why it allows for O
(n) solutions to NP-complete problems.

SOLUTION TREE

UMM

| .
) [ o[

T N L L N T L N I T T
RN U N A VAR A AR O B B A N

Fig. 2.
panel: the sketch of the UMM transition function
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Left panel: a typical solution tree for an NP-complete problem. Right

to solve it.

Solving NP-Complete problem with
parallelism, 2013, “Universal
Memcomputing Machines”


http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Systolic_array

Tangent: Criticism of Memristors

Some criticisms of both memristor theory and some of the excitement over
memristors.

11
“The conclusion is: Put the computation near the data.”

Is this anything new? Generations of systems designers and engineers have given their best to achieve this ideal.

But again, the fundamental difference of computation (operator) and data (operands) is kept alive and is determining the rest
of the game.”

-Why Memristors Wont Change Anything

-The Mythical Memristor



http://memristors.memristics.com/Why-Not/Why-Not.html
http://www.slideshare.net/blaisemouttet/mythical-memristor

Computing in Neural Nets
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On the other hand, analog, learning-based, truly-
distributed computation/storage in memory is
fundamentally different from UTM computing.
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Memristors are perfect for synapses due to high
density, continuous value, and inherent STDP.

Figure 5. A simple neuromarphic network.
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FIGURE 3. Demonstration of STDP in the memristo

r synapse. (@) The

2008,“Spike-Timing
Dependent Learning in
Memristive Nanodevices”

2009, “Exploiting memristance in adaptive
asynchronous spiking neuromorphic
nanotechnology systems*

2010, “Nanoscale Memristor Device as Synapse in
Neuromorphic Systems* (500+ citations)



Many Synapse Designs

Vout

2013, “Reconfigurable

Neuromorphic Computing 2012, “Memiristor Bridge

" 2013, “Design of an
System with Memristor-Based Synapses electronic S)gnapse with 2012, “Energy-Efficient
Synapse Design” spike time dependent Neuron, Synapse and

STDP Integrated

plasticity based on Circuits”

resistive memory device”
Can be memristors in crossbar, but many are more complicated due to actual complexity of
synapses and problems in fabrication. The spike-time dependent plasticity (STDP) unsupervised
learning mechanism is the primary focus due to biological link and ease of implementation.



Even More Complex: Neuron Design
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Fig. 4. Circuit diagrams of (a) a simple soma circuit proposed by Mead [21]
and (b) a complex soma circuit proposed by Indiveri et al. [22]. Individual

Older designs, 2012, “Low-Temperature Fabrication of
Spiking Soma Circuits Using Nanocrystalline-Silicon TFTs"
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2012, “Neural Learning Circuits

Utilizing Nano-Crystalline
Silicon Transistors and
Memristors”
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Neuristor

2012, “A scalable neuristor
built with Mott memristors”

Much larger than synapses, but there also need to be far fewer. Human brain has 10*14 synapses and

10710 neurons, so neurons can be in the micrometer range if synapses are in the nanometer range.
Address Event Representation (AER) is commonly used to implement large amount of connections
between neurons. However, issues with power and overall scalability are not yet solved.
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Small and large crossbars tested in simulation and reveal

promising results. DARPA SyNAPSE project leading with the 2012, “Memristor Bridge Synapse-Based
largest architectures, though other scalable systems are Neural Network and lts Learning® (multi-
proposed. layer, trained on a computer)



Possibility of supervised learning

Most research focused on STDP, but newer papers are suggesting more
complete designs for multi-layer neural networks. Multi-layer STDP has
also been demonstrated for learning more complicated functions such as

movement comprehension.
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Fig. 4 Implementing the Back propagation for a MNN with MSE error, using a modified version of the original circuit. The function
boxes denote the operation of cither o (-} or @’ () on the input, and the x box denotes a component-wise product. For detailed

circuit schematics, see 210

2014, “Memristor-based multilayer neural networks with online gradient descent training“



Prospective Work

Currently, working to simply enable simulation of neural net learning with
existing synapse and neuron designs.

In the longer term, a novel topic needs to be focused on. A possible approach
to this is to research how more recent Machine Learning concepts can be
incorporated into existing ideas, as none of the papers exploring neuromorphic
architectures do this. Another possibility is to research novel ways to
incorporate neural nets into conventional computers, such as learned branch
prediction. Finally, my work could be more directly connected to past
publications of this lab.



